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Abstract-A salt gradient solar pond is a large thermo-haline double-diffusive system of depth up to 3 m, 
having a lower convecting or storage zone with about 20% salt by weight, and a non-convecting uniform- 
gradient zone above providing insulation. Heating by solar radiation is partly within the liquid and partly 
at the base. The principal fluid mechanics problems are growth of the lower convecting zone, emergence 
and growth of an upper convecting zone and the possible breakdown of the gradient zone into a number 
of convecting zones simultaneously. It is shown that the well accepted model of double-diffusive convection 
for ‘strong’ heating from below a stable salinity gradient does not apply at the very modest level of solar 
radiation. more especially when part (or even all) of the heat is generated within the fluid. New models 
are developed in which buoyant thermals play causal roles (as, indeed, they do in the case of ‘strong’ 
heating). Thermals from all three kinds of boundaries are investigated, and it is found that although there 
is a limited quantity of fluid in a thermal, connection is retained with the source during its lifetime. Thermals 
from the solid base are of the well known axisymmetric kind. Those from the boundary with air, and from 
liquid of a different density, the so-called ‘free’ boundaries, are shown to be two-dimensional and Gaussian 
in profile. Thermal ranges are found to be well detined and increase according to environmental (water) 
temperature, with a common form of range equation. The equation is calibrated experimentally for each 
type of thermal. For a given environmental temperature, axisymmetric thermals have by far the longest 
range whilst Gaussian thermals from a boundary with air have the shortest. I f  thermals do not reach the 
opposite boundary there is local heating or cooling; if they do, there is boundary erosion and zone growth, 
that is, penetrative convection. Each convecting zone has two sets of thermals, upwards and downwards, 
which are the principal means of heat transfer. This is illustrated for the particular case of a solar pond. 
Finally, it is shown that the onset of ‘turbulence’ at Rayleigh numbers in the region of 5 x IO4 to IO’ marks 

the transition from laminar Benard-Rayleigh heat flow to quantised Row by thermals. 

1. INTRODUCTION TO SOLAR PONDS AND 

MODELLING 

THE SALT gradient solar pond is simple in principle 
and many examples occur in nature, such as the 
Medve Lake in Transylvania and lakes in the Car- 
pathian Mountains of northern Romania. Bottom 
temperatures reach up to 70°C due to the remarkable 
properties of salt water. With a high concentration of 
salt at the bottom and a sufficiently uniform gradient 
to zero or near zero at the top, buoyancy is overcome 
and convection suppressed. Water is then a good ther- 
mal insulator; one metre being equivalent to 2-3 cm 
of foam plastic insulation. Afeef [l] and Afeef and 
Mullett [2] have shown that even when loaded with 
20% of sodium and/or magnesium chloride, water 
will settle and clear to the transparency of distilled 
water for the shorter wavelengths of the solar 
spectrum. Of the total insolation, about 25% is infra- 
red which is absorbed right at the surface, whilst 20- 
30% reaches a depth of several metres. 

During the 196Os, the potential of artificial ponds 
was recognised for the efficient and economic col- 
lection and storage of solar energy. Pioneering work 
owes much to Rabl and Nielsen [3] in the United 
States and to Weinberger [4] and Tabor [5] in Israel. 

Development has spread around the world, especially 
to those areas having excellent insolation conditions, 
such as the Middle East generally, Australia and 
South America. Commercial scale exploitation is most 
advanced in Israel where strategic energy con- 
siderations make it desirable to use the resultant water 
at 80-90°C for electricity generation. 

Artificial ponds, Fig. 1, have a total depth of 2-3 
m. The lower convecting (or storage) zone is about I 
m in depth and is laid down with a concentration 
of the order of 20% by weight of sodium and/or 
magnesium chloride. In the gradient zone above, with 
a depth of about 1.5 m, the salt concentration is 
reduced as near linearly as possible, to zero or a low 
value at the surface. After the 25% infrared has been 
absorbed in the first few millimetres, the rest of the 
solar radiation is absorbed roughly equally within the 
fluid and at the base. 

In fluid mechanics terms, the pond is a large thermo- 
haline double-diffusive system whose performance is 
governed by the vertical gradients of temperature and 
salt concentration and their diffusivities. Maintenance 
is required to sustain the salt gradient against salt 
diffusion. On heating, the principal fluid mechanics 
problems are growth of the lower convecting zone, 
the appearance and growth of an upper convecting 
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NOMENCLATURE 

A thermal fluid area Ra, critical Rayleigh number 
d fluid depth 4 salinity Rayleigh number 
erf error function s salinity 
erfc 1 - erf complementary error t time 

function T temperature 
9 acceleration due to gravity V thermal volume 
G constant for a type of thermal, W power [watts] 

S’r’(AT/2) z vertical height in pond 
H heat flux Z thermal range. 
K thermal diffusivity 
KS diffusivity of salt 
KT diffusivity of heat Greek symbols 
M Marangoni number c? thermal expansion coefficient 
M-d/6 nondimensional height u horizontal wave number 
n vertical wave number Y surface tension 
N flux of thermals s boundary layer thickness 
N angular frequency of buoyancy 6 characteristic dimension 

oscillation AT temperature difference 
NU Nusselt number P molecular viscosity 
Pr Prandtl number V kinematic viscosity 
r radial distance over which velocity and P fluid density 

temperature difference fall to zero P’ density difference in a thermal 
Ra Rayleigh number u Prandtl number. 

zone, and possible breakdown of the gradient zone 
into a number of convecting zones, simultaneously not 
sequentially. 

These problems are far more readily studied in lab- 
oratory models than ‘in the field’, but the conse- 
quences of scaling are different in each case. 
Reduction of the vertical dimensions gives direct 
information about stability of the gradient zone since 
both temperature and salinity gradients are scaled. 
Growth of the lower convecting zone requires exper- 
imental calibration of an analytical model to extrapo- 
late to actual pond dimensions. For power input simi- 
lar to solar conditions, thermal build-up time is 
reduced by the vertical scaling, but further reduction 

FIG. 1. Schematic of salt gradient solar pond. 

by increased power input can lead to quite different 
phenomena. This is so in respect of breakdown of the 
gradient zone. The upper convecting zone is a surface 
phenomenon unaffected by scaling. 

2. GROWTH OF THE LOWER CONVECTING 

ZONE 

2.1. Modelling 
The programme of modelling work at the Uni- 

versity of Reading was pioneered by Tsilingiris [6]. 
Well insulated metal and plastic vessels were used 
around 40 cm in diameter. They were filled to a depth 
of about 47 cm with clear water with a linear gradient 
of sodium chloride. The concentration was varied 
from various maximum values at the bottom to zero 
at the top. Heat was supplied by a solar simulation 
lamp, equivalent at its maximum rating to about ‘one 
sun’ continuously. After absorption of the infrared at 
the top, the majority of energy release was at the 
blackened bottom. 

Temperature and density were measured and rec- 
orded simultaneously as a function of height. For the 
purpose, Tsilingiris developed a direct buoyancy/ 
density meter. A silica rod, typically of 4 mm diameter 
and 5 cm in length, was suspended horizontally from 
a fine nylon line attached to a sensitive load cell. 
Since silica has a negligible coefficient of expansion with 
temperature, the amplified output was directly related 
to the density of the displaced fluid. The whole device, 
together with a thermocouple at the same height as 
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the rod, was mounted and traversed vertically on a 
motorised lead-screw. Typical scan time was about 
two minutes. It has since been discovered that Rich- 
ards [7] had earlier utilised the principle with a glass 
tube partially sealed with paraffin wax and suspended 
horizontally from a balance. 

In all the runs, using a wide range of maximum 
salt concentrations up to near saturation, Tsilingiris 
observed the immediate emergence and growth of a 
lower convecting zone. Growth ceased immediately 
the power source was switched off. It was found that 
the growth rate increased with increased simulator 
power and with decreased salt concentration. But 
growth rate for typical solar radiation was far less than 
that of the ‘strong’ heating from the base necessary to 
achieve the double-diffusive criterion of Turner [8, 
91. This requires that the applied heat be virtually 
confined to the lower convecting zone, that is, with a 
temperature discontinuity to the remaining gradient 
zone. The reduction in density in the convecting zone 
due to the temperature rise is just balanced by the 
increase due to mixing of the salt, leaving no step in 
density to the gradient zone. Yet in the solar pond 
models there was always a gradient of temperature 
into the salt gradient zone and a step in density, as 
shown, for example, in Tsilingiris and Mullett [IO] 
and in Fig. 2 by Azhari [ II]. Temperature fluctuations 
were observed at the boundary between the lower 
convecting zone and the gradient zone, with two 
characteristic frequencies of about five cycles per 
minute and one cycle in five minutes. But there was 

Time (h) --.- 

Density 

no evidence of anomalous behaviour, such as a 
threshold or saturation, which might have given a 
clue as to the mechanism involved. According to avail- 
able knowledge at that time some form of penetrative 
convection was considered to be responsible, as 
sought analytically by fluid dynamicists such as 
Veronis [12] and, later, by solar pond investigators 
such as Zangrando et al. [ 131. 

Azhari [ 1 1] made the first observations of the poss- 
ible role of buoyant thermals. Solar pond models of 
similar diameter were filled to a depth of 36 cm, but 
with electrical heating at the base and a more 
developed model of the Tsilingiris scanner and associ- 
ated electronics. With average power at the base of 
300 W m- ‘, successive runs were carried out at 
maximum salt concentrations of 5, 10, 15 and 20% 
by weight. A slowing down of growth rate of the lower 
convecting zone was observed but with no apparent 
threshold or distinct saturation. The 15% run was 
repeated at 150 and 450 W m-‘. Growth rate 
increased with power input but not in any distinctive 
way. Conditions were not pressed to breakdown of 
the gradient zone. 

A typical set of temperature and density scans with 
advancing time is shown in Fig. 2. There were appar- 
ent temperature fluctuations at the zone boundary, at 
much the same frequencies found by Tsilingiris, due 
to movement of fluid at temperatures different from 
the brackground. However, with the more sensitive 
density probe, at high gain, strong and rapid fluc- 
tuations were observed within the lower convecting 
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FIG. 2. Vertical distributions of density and temperature in a solar pond model (Azhari [I 11). 
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zone, suggestive of impulses from locally turbulent 
upward movement of fluid. This was confirmed by the 
still larger impulses observed with a flat disc of silica 
of the same volume as the rod. The impulses appeared 
within a minute of switching on the heater and dis- 
appeared equally rapidly on switching off, strongly 
suggestive of thermals from the heated base striking 
the disc. The introduction of a layer of dye onto the 
base, using as dilutant some salt solution extracted 
from the bottom, revealed such thermals beginning to 
rise very soon after switching on. They ceased immedi- 
ately on switching off. Although tending to wander 
before being stopped by the density step at the gradi- 
ent zone, they were seen to be much longer versions 
of the axisymrnetric thermals photographed by Spar- 
row et al. [14]. Evidence of mixing was noted at the 
boundary with the gradient zone, both density and 
temperature scans becoming rounded as heating was 
applied and reverting to being sharp when it was 
removed. 

Measurements with dye in a deep glass tank heated 
at the base and filled with 15% salt solution showed 
that the thermals appeared to have very roughly con- 
stant velocity and quite distinct range increasing with 
environmental (fluid) temperature. They retained 
connection with their points of origin during their 
lifetime, appearing more like the ‘starting plumes’ of 
Turner [9] (p. 166). Increased power input increased 
the rate of thermalformation without obvious effect on 
appearance. At a fluid temperature of 2O”C, the vel- 
ocity was about 6 mm s- ‘, making the thermals 
immediately recognisable against any background of 
dye. The range was about 44 cm. 

A simplified model pond was set up with a lower 
zone of 44 cm of uniform 15% salt solution with plain 
water above. Starting at 15°C the density/ 
temperature probe showed no growth of the lower 
zone, but at 20°C growth became rapid. The best 
estimate of the temperature at which the thermals 
reached a range of 44 cm was 17°C. More fundamental 
study was clearly required of axisymmetric thermals 
and their ranges as a function of environmental tem- 
perature, preferably with an analytical model to 
extrapolate to actual solar pond conditions of height 
and temperature. 

2.2. The origin of thermals 
Heat transfer by conduction from a moderately 

heated base involves a temperature distribution 
advancing with time as 

T= y[l-erf {2/2.J(K.t)}] (1) 

where AT/2 is the temperature difference between the 
fluid and the base, z the vertical height, t the time and 
K the thermal diffusivity. As with an exponential, an 
effective wavefront can be defined by extrapolating 
the gradient at z = 0 until it reaches the z axis at 6 = 
J(nKt). The value of 2T/AT is then 0.21.6 is assumed 

to be the boundary layer thickness and the heat flux 
is proportional to l/6. 

There is a strong tendency to overturn, given an 
initial perturbation. It is generally believed that this 
occurs at a time t* when an appropriate critical value 
of Rayleigh number is reached for the boundary layer, 

where g is the acceleration due to gravity, cy. the 
coefficient of expansion and v the kinematic viscosity. 

Howard [15] was particularly concerned with a 
solid horizontal boundary in air. He assumed 
Ra, - 10’. At the corresponding time t* the whole of 
the buoyant fluid in the boundary layer was con- 
sidered to break away in a short time compared with 
I*. The process was then repeated. The time averages 
of the conduction profile were computed over the time 
interval (0, t*) and showed good agreement with the 
mean temperature profile in the lower atmosphere 
measured by Townsend [16]. Figure 3 is based on 
Turner [9]. However, whereas the breakaway of buoy- 
ant fluid over a wide area is consistent with the form 
of thermals in the atmosphere, it is certainly not so 
for thermals from a solid lower boundary in water or 
an aqueous solution. High spots of thermal con- 
ductivity trigger the emission of buoyant fluid as 
axisymmetric thermals. 

Elder [17] observed this phenomenon in a two- 
dimensional computer model. Initially, a first ex- 
ponential was triggered by an applied surface 
imperfection, followed by a second exponential ampli- 
fication phase. The final phase, Fig. 4, was the emis- 
sion of a blob of buoyant fluid, only partially denuding 
that region of the boundary. Although the charac- 
teristic dimension of the blob was of the order of 
thickness of the boundary layer, the majority of the 
fluid could be seen to be from the leading edge. This 
would be even more accentuated in three dimensions, 
and seems to be confirmed by some experimental 

g 
AT 

FIG. 3. Mean temperature profile of boundary layer (based 
on Howard [ 151). 
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Ejection 

FIG. 4. Two dimensional growth of a thermal from a metal 
base-showing isothermals (Elder [17]). 

results for water due to Elder shown by Turner [9] in 
Fig. 3. The distinctly higher mean temperatures near 
the boundary, shown by the crosses, imply that less 
fluid from this region is being stripped away in ther- 
mals. Elder also computed the case of a spatially 
periodic perturbation over the boundary, leading to 
the simultaneous ejection of a corresponding row of 
thermals. 

Elder used (quote) “a critical Rayleigh number, 
which for want of a better choice, we take as the 
value given by the corresponding Btnard-Rayleigh 
problem”, that is a value of 1100, as appropriate 
between a solid surface and a ‘free’ or density differ- 
ence surface. The corresponding value of 6 for an 
environmental temperature of 20°C and AT/2 of 1°C 
is 4.29 mm. 

2.3. A range equation 
Initial calculations of the behaviour of a blob of 

fluid in water included inertia1 effects, but this proved 
unnecessary since constant velocity was very soon 
reached due to viscous drag. Ideally, a simple equation 
of state was required which could be calibrated and 
checked with measured data, and used to extrapolate 
with temperature and height to actual solar ponds. 
Turner [9] had devised just such an equation, to 
illustrate convection and Rayleigh number. He used a 
single characteristic dimension 6 for all the dimensions 
involved. Calibration takes care of them all. There is, 
however, some advantage in distinguishing between 6 
as the characteristic dimension of the blob of fluid 
and I’, the radial distance over which velocity and 
temperature difference fall to zero. 

Equating buoyancy force and viscous drag : 

A dz 
gp’V= P’T’Z 

where p’ is the density difference of the fluid in the 
thermal, V the fluid volume, p the molecular viscosity, 
A the fluid surface area and r the radial distance over 
which dz/dt falls to zero. 

The rate of reduction of p’ is related to the thermal 
diffusivity as 

Hence 

dp’ -= q&!. 
dt Vr 

Integrating over time from 0 to co 

V2 r’ dp AT 
z=szgp 6 /.l=vp p;=dT’2 

u V’r’ AT 
=‘% A2 2 

*P*- tl = coefficientofexpansion. 

For axisymmetric thermals : 

V2 
V-6’ A-6’ z-b2. 

Writing G = s’r’(AT/2) the range equation becomes 

This form is ideal for calibration since the temperature 
sensitive parameters are separated from the 
unknowns. Resealing with 6 as the unit of length gives 
the interesting, but unusable, nondimensional form 
Z’ = Ra,(r’) ‘. 

2.4. Effects of applied and environmental temperatures 
The utility of the range equation depends upon 

the extent to which G is independent of the applied 
temperature AT/2 and the environmental temperature 
T. 

Elder’s isothermals indicate that the thermal con- 
sists mainly of fluid from the leading edge of the 
boundary layer, which could imply independence of 
AT. But the strongest evidence is that all observers, 
Sparrow et al. in particular, find that increased heat 
leads to more thermals without changing their nature. 
This can be readily checked analytically. 

Thermal rate 

N = &- per unit area in unit time 

where 

t* = time for front to reach 6, 

where S = ,/(nKt*) t* CC 6’. 

From Ra, : 

6’AT = constant 

6 cc (AT)-“3 

Hence 

N cc l/a4 cc [Ar]“” 
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NaH. 

It is perhaps more speculative that G might be 
independent of environmental temperature. If so, then 
over the temperature range 20-8O”C, K is nearly con- 
stant, LY increases by a factor of just over 3 whilst v 
decreases by just under 3, giving an overall increase 
in Z by a factor of 9. This was checked with more 
experimental data as follows. 

2.5. Range measurements for axisymmetric thermals 
The range equation was calibrated using Azhari’s 

data for the range at which his lower convecting zone 
began to grow, that is, Z = 44 cm at T = 17°C. Figure 
5 shows the resulting graph of Z vs T, on the assump- 
tion that G is independent of T and AT/2. 

Further range measurements were made in a variety 
of glass and transparent plastic cylinders up to 10 cm 
in diameter, filled with water at the required tem- 
peratures. A diluted food dye was injected with a 
fine plastic tube and a syringe onto the base, with 
minimum disturbance. The base was then heated with 
warm air. Figure 6 shows the kind of axisymmetric 
thermals seen at short ranges using chilled water, the 
continuing connection with the source being very 
clear. At longer ranges for higher water temperatures 
they tended to wander and the dye became tenuous. 

80 

70 

60 

50 

-2 
3 40 

N 

30 

20 

10 

o ExperimenLal points 

E Calibration poinu 

From solid base 

30 

T  (“C) 

FIG. 5. Thermal range vs environmental temperature. 

FIG. 6. Axisymmetric thermals. 

Nevertheless, the thermal fluid was easily recognised 
by its considerable and roughly constant velocity of 
the order of 0.5-I cm s- ‘, and by its coming quite 
abruptly to rest. The scatter in range was about 10% 
at each value of T. The good fit to the calibration 
curve shows that G is markedly, if not entirely inde- 
pendent of environmental temperature. 

The value of G was 36.1 x IO- ” (in SI units), from 
which can be derived the orders of d and r for any 
given environmental and applied temperatures. 6 
might be expected to bear some relationship to the 
initial size of the blob of heated fluid, with r being 
more an effective value giving some measure (by its 
smallness) of the effectiveness of viscous damping. 
For T = 20°C and AT/2 = l”C, the boundary layer 
thickness is 4.29 mm. Hence r = 1.40 mm, which is of 
the order expected. 

The independence of range to AT/2 was directly 
checked by immersing the base of a cylindrical vessel 
in a water bath at a range of temperatures. AT/2 in 
the fluid was calibrated to zero for no thermals. From 
0 to 14”C, from no thermals to a rush of many ther- 
mals, the range increased by a factor of only 1.2 as 
shown in Fig. 7. Hence for practical purposes it can 
be taken that G is a constant, and for axisymmetric 
thermals : 

Z = ,$36.1 x 10-12. 

This range eqtiation works remarkably well as regards 
variation with ambient temperature considering the 
simplicity of its derivation. To correctly reproduce the 
roughly constant velocity followed by an abrupt stop 
would require a fresh, more sophisticated approach, 
taking into account that d and r are also functions of 
time. Similarity solutions should be tried. The treat- 
ment by Griffiths [18] of thermals and plumes in very 
viscous fluids is of some interest though not directly 
relevant. The thermals and plumes are laminar as in 
the earth’s mantle, and not turbufent as in water. They 
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FIG. 7. Thermal range and base temperature. 

entrain background fluid by heating it in a boundary 
layer, rather than through turbulent eddies. Similarity 
solutions are found and simulated thermals show 
expanding Hill’s spherical vortices. A simulated start- 
ing plume looks remarkably like the axisymmetric 
thermals observed in chilled water. 

2.6. Implications 

Tyical starting conditions for an actual solar pond 
might be a lower convecting zone of depth I .O m at a 
temperature of 20°C. Solar energy absorbed in the 
fluid would slowly increase temperatures throughout, 
but that reaching the bottom, usually a black plastic 
liner, would produce axisymmetric thermals having 
an initial range of only 56 cm. The temperature of the 
lower region, up to the range of the thermals, would 
increase until the thermals eventually reached the 
boundary with the gradient zone, as determined by 
the range equation. Thereafter, the lower convecting 
zone would grow due to mixing and erosion, producing 
a salt step. The effect of salt diffusion is, however, to 
tend to smooth the step. These opposing factors usu- 
ally result in growth of the lower convecting zone in 
the summer and decay during the winter. Hence the 
phenomenon is not a disastrous one. Any attempt to 
suppress the thermals would upset this balance. 

To complete the information on thermals and their 
effect, further experimental data are required on the 
amount of heat transported by each thermal and the 
rate of zone growth in response to a given flux. As 
regards the latter, work by Azhari [l I] already men- 
tioned is relevant. 

Although not directly applicable, it is of interest 
that the effects of thermals were simulated as early as 
1961, in an attempt to describe convection processes 
in the atmosphere. According to Turner [ 191: 

“Experimental investigations have been made by 

Richards [7] and Saunders [20] of the conditions 
under which buoyant thermals can penetrate an 
interface between two fluid layers of different den- 
sities. When the buoyancy is reversed in the second 
layer, so that the thermal penetrates some distance 
and then falls back, the phenomena of erosion and 
wave generation are prominent. These results have 
been used by Saunders to interpret observations 
of the growth of large clouds through the tropo- 
pause”. 

The experiments were carried out in glass vessels of 
about 1 m cube, with water at the top and salt solution 
below. Artificial axisymmetric thermals were created 
by overturning a hemisphere containing about 0.5 I 
of coloured salt solution at the water surface. The 
behaviour of the thermals was followed photo- 
graphically, with the degree of penetration of the 
boundary being varied by the relative densities. Rich- 
ards was also able to locate the final disposition of the 
thermal fluid by using cobalt chloride for the first 
stage of viewing. Residual cobalt chloride ions could 
then be chemically treated so as to absorb blue light 
proportional to concentration. Furthermore, Rich- 
ards observed that if the hemisphere was not rapidly 
overturned, the motion was more plume-like than 
thermal, somewhat as observed with real axisym- 
metric thermals. It should be noted that the devel- 
opment of the thermals as such may differ somewhat 
from those of concern in this paper in that the buoy- 
ancy is chemical not thermal. 

3. GROWTH OF AN UPPER CONVECTING 
ZONE 

3.1. Model observations 

In virtually all temperature and density plots of 
laboratory models of salt gradient solar ponds, for 
example those of Fig. 2, an upper convecting zone 
appears as soon as the surface temperature rises above 
ambient air temperature. Tsilingiris [6] found that 
growth persisted long after his solar lamp was 
switched off. Azhari [Ill confirmed these exper- 
imental findings without adding anything relevant 
to the cause. 

By analogy with the role of thermals from a heated 
base, it seemed likely that a surface cooled by evap- 
oration should equally well produce downward ther- 
mals with definite range. These would erode the top 
of the gradient zone and lead to a growing convecting 
zone. To remove surface heat produced by the infra- 
red radiation from his solar lamp, Tsilingiris used a 
cooling fan and, from time to time, flushed the surface 
with cool water. Both would stimulate more down- 
ward thermals. 

3.2. Informalion from the literature 
A literature search was made for observations of 

fluid falling from a surface cooled by evaporation, 
and, assuming the same thermal formation mechan- 
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ism, a critical Rayleigh number for a layer of fluid 
bounded on one side by air and on the other by a 
change in fluid density. 

Katsaros ef al. [21] refer to a number ofwriters from 
Woodcock [22] onwards, having noted or studied the 
existence of a cool boundary layer on the surface of 
natural water bodies due to net upward heat flux. 
They themselves made extensive measurements of 
temperature distribution in such boundary layers. For 
the observation of thermals they refer to work by 
Spangenberg and Rowland [23], and for the initiation 
of free surface instability to Pearson [24]. 

Spangenberg and Rowland used a Schlieren photo- 
graphic system looking at the open top and one longer 
side of a glass vessel filled with water to a depth of IO 
cm. On removing a plastic cover, they observed that 
“Streamers of liquid then plunged precipitously from 
the cooled surface layer. Upon reaching the container 
bottom.. .“. Runs were carried out at water tem- 
peratures of 27.8, 29.5 and 39.2”C in still air. The main 
effect of greater evaporative cooling at higher water 
temperature was found to be a greater rate of thermal 
formation. The Schlieren photographs of the surface 
showed very clearly the changing pattern of lines from 
which fell the sheets of fluid. The side views, however, 
showed a mass of detail of every change in density. 

The convergence of water along surface lines is 
generally attributed to variation of surface tension 
with temperature. Under appropriate conditions, reg- 
ular patterns are seen, notably the hexagonal form of 
Btnard cells which were observed in a shallow dish 
open to the air at the top. The Marangoni number is 

ay a7- 
M= -FT.z.d’*(pvK)-’ (4) 

where y is the surface tension and d the fluid depth. 
Pearson found that marginal stability occurred at a 
critical value of M = 80, and that the Rayleigh num- 
ber for the boundary layer was 571. The questions are 
whether discrete thermals exist, what form they take 
and what is their range, particularly as a function of 
environmental temperature. 

3.3. Two-dimensional thermals and range measurements 
Experimental observations were made in a thin 

walled glass cylinder 8.5 cm in diameter and 14 cm 
deep, filled with water at 18°C. A diluted food colour 
was applied to the surface so that it might be entrained 
with the thermals and show their shape and devel- 
opment. However, the slightest vertical momentum 
sent the dye to the bottom as spurious thermals, often 
axisymmetric. Use of a thin floating diffuser 1 cm 
square improved the situation, but the dye still tended 
to fall off the diffuser. The eventually successful tech- 
nique was to dilute the dye with warmer water, intro- 
duce it with the diffuser and leave the dye floating 
on the surface awaiting cooling. A fan was used to 
enhance evaporation. 

Within a few minutes, quite unmistakable two- 

7x5 --- --- -- 
FIG. 8. Falling thermals from a surface to air at various 

stages of development. 

dimensional thermals were clearly visible, Fig. 8. The 
vertical and near vertical lines were end views. In 
profile, the thermals started out like Gaussian dis- 
tribution outlines, growing and travelling downwards 
at a roughly uniform speed of about 2 mm s- ‘, whilst 
retaining contact with the line source. (This use of the 
term Gaussian is not to be confused with the time 
averaged Gaussian distributions of velocity and tem- 
perature within turbulent plumes.) They came quite 
sharply to rest at a depth of (3f0.5) cm in one of 
two terminal states, a symmetrical mushroom or an 
asymmetric hook, with a width of about 1.5 cm (mak- 
ing due allowance for magnification by the cylinder 
of water). It is shown later (Section 4) that when the 
Gaussian profile has a tilt or shear, the fluid, and 
hence the dye, concentrates on one side to look like a 
hook. It would have been valuable to have photo- 
graphic evidence, but the dye is tenuous and there is 
no substitute for visual observation of the dynamic 
behaviour. Spangenberg and Rowland did not recog- 
nise the two-dimensional thermals, perhaps because of 
their snap shots in time as compared with continuous 
viewing by eye (they had tried using dye, without 
success). Yet knowing now what to look for, Gaus- 
sians, mushrooms and hooks can all be identified. 
Although at their top temperature of 39.2”C the true 
thermals may have reached the bottom of the vessel, 
they should not have done so at the lower tempera- 
tures. This is confirmed by the presence of the two 
end states. . 

Range measurements were made at temperatures 
up to 48% The range equation was calibrated at 20°C 
and, as shown in Fig. 5, the further experimental 
ranges were a good fit to the curve, That the same 
range equation is likely to fit, can be seen by going 
back to the form with separate thermal volume Y 
and area A. For near two-dimensional thermals from 
cylindrical blobs of fluid of cross section 6 and length 
1, V = Li21 and A = 61. Hence V2/A2 is again equal to 
a2, independent of 1. The lower velocity and much 
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shorter range for a given temperature are the result of 
greater area and viscous drag for a given volume. The 
value of G was 2.36 x lo-“. For water at 20°C and 
AT/2 = 1°C. 6 = 3.44 mm and r = 0.45 mm, as com- 
pared with 6 = 4.29 mm and r = 1.40 mm for axisym- 
metric thermals. 

3.4. Growth of a convecting zone 
Having established the existence of discrete ther- 

mals with definite ranges, their role in establishing an 
upper convecting zone could then be examined. 

A plastic vessel 15 cm across was filled with a 5% 
salt solution at the ambient air temperature of 17°C 
to within 1.6 cm of the top. A 1.5 cm layer of plain 
water also at 17°C. in which the thermal range would 
be 2.5f0.5 cm, was very carefully diffused onto the 
top using a small cork mat. Dye was added to the 
surface at the edge of the container with further dye 
at the centre. 

Evaporation was enhanced by a fan blowing across 
the surface. Within 5 min a well defined line of dye 
extended right round the interface, marking it very 
clearly. As shown in Fig. 9, growth of the upper zone 
began virtually immediately and was linear up to 
about 7 h. It then slowly levelled off to 2.8 cm after 
30 h. The upper water temperature fell slowly to 15°C. 

The slow approach to a limiting depth reflected the 
scatter in thermal range. The ultimate limit of 2.8 cm 
was the maximum depth of falling thermals at 16°C 
that is, 2.3+0.5 = 2.8 cm. The centrally introduced 
dye took about 3/4 h to be stirred into a uniform 
colouration. Hence, whilst the thermals immediately 
eroded the boundary, they took a considerable time 
to stimulate convective circulation. 

3.5. Implications 
There is immediate relevance to the behaviour of 

solar pond models in the laboratory. Evaporation is 
enhanced by heat from the base diffusing through to 
the top and raising the temperature above that of the 
ambient air. An upper convecting zone grows, and 

continues to grow after the heat source is switched 
Off. 

When solar ponds in the field grow an upper con- 
vecting zone it is usually attributable to wind induced 
waves and mechanical mixing. Floating plastic nets 
or rings are used for suppression. However, it seems 
very likely that thermals can be responsible in some 
cases since evaporation is necessary to get rid of sur- 
face heat-that due to infrared radiation and that 
conducted through the gradient zone. Wind would 
play a supporting role by enhancing evaporation. 
Such an upper convecting zone seems the more likely 
in those geographic areas having the best insolation 
conditions since they tend to have high ambient tem- 
peratures and, on occasions, strong winds. 

It is highly questionable whether any attempt 
should be made to prevent falling thermals. With a 
surface temperature of 35°C the thermals would still 
fall no more than 10 cm, with this being the limiting 
depth of the resultant convecting zone. The loss in 
pond efficiency would not be serious. Suppressing the 
thermals by using a thin film of oil or plastic on the 
surface would have dire consequences. With the loss 
of evaporative cooling the whole level of temperatures 
in the pond would rise with catastrophic results. 

4. BREAKDOWN OF THE GRADIENT ZONE 

4.1. Observations and criteria 
Early thinking on this matter was much influenced 

by the pioneering work of Turner [8, 91 on double- 
diffusive convection. Theoretically and exper- 
imentally, he showed how in water with a uniform 
gradient of salt ‘strongly’ heated from below a lower 
convecting zone would grow continuously for a time, 
followed by emergence at the top of this zone of a 
succession of new convecting zones. Further analytical 
and experimental work was carried out by Huppert 
and Linden [25] applying power levels of 420-4200 W 
m-* at the base. Essentially Turner’s rate of heating 
was such that the vast majority of the heat had no 
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FIG. 9. Upper convecting zone height vs time-at final temperature of 14°C. 
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time to diffuse beyond the convecting zone, but when 
some eventually did so, the temperature gradient was 
so large as to produce overturning and a rapid suc- 
cession of new zones. Huppert and Linden gave it 
among their own and Turner’s assumptions that the 
heat of the thermal boundary layer ahead of the 
advancing front could be neglected in calculating the 
heat budget for the layers and that the density step 
was zero. 

As already seen, these conditions are certainly not 
the case in solar pond models heated wholly or mainly 
at the base with the equivalent power of solar radiation, 
which, at its very best, has a daily mean value of only 
300 W m-*. Accordingly, Tsilingiris [6], using a solar 
simulation lamp and the models, equipment and tech- 
niques described in 2. I, was unable to reproduce suc- 
cessive new zones. Yet Azhari [I I] was able to do so 
by raising his electrical heating at the base far beyond 
that used in his own experiments. The evidence was 
conclusive that the Turner/Huppert and Linden 
model does not apply to any system, natural or arti- 
ficial, where the heating is solar or of solar magnitude. 
An alternative was needed. 

Eventually Tsilingiris found that it was necessary 
to reduce the maximum salt concentration at the bot- 
tom to 10% or less, and to continue heating for several 
days, in order to induce breakdown of the gradient 
zone. His short time interval between scans (a few 
minutes) showed conclusively that a number of new 
convecting zones appeared simultaneously not suc- 
cessively. A range of experimental runs was made 
with different parameters to observe the conditions at 
which instability occurred. 

Subsequently, Tsilingiris [6] and Tsilingiris and 
Mullett [IO] showed that there was a very good fit 
of these data to a dynamic stability criterion first 
published by Weinberger [4], [26] : 

d”>- v+G (WW, dT 
dz ’ 

-.-.- 
v+ K, (ap/as)T dz 

where s is the salinity and KT and KS are the diffu- 
sivities of heat and salt. Since KS is very much smaller 
than KT 

(5) 

The salt gradient for dynamic stability (ds/dz)dyn has 
to be greater by a factor of (1 + K&J) than that for 
static stability (ds/dz),,,,. The factor is usually quoted 
as 1.14, but this is its value at 20°C. The maximum 
base temperature of a solar pond is of the order of 
8o”C, at which the factor needs to be 1.40. 

Figure 10 shows the outcome of the most carefully 
contrived run for a maximum salt density of 4.9%, 
with a near-uniform temperature gradient over the 
gradient zone at breakdown. As usual, the details were 
best seen in the temperature scans, and in that marked 
- there were seven new zones. Their heights 
averaged 1.34 cm, and the temperature difference 

across each of the five inner zones was 2.3”C, giving 
Rayleigh numbers of 1.7 x IO’. The uppermost of the 
new zones had a much higher temperature difference 
of 11°C from the upper convecting zone, giving a cell 
total of 12°C and a Rayleigh number of 9 x IO’. The 
lowest of the new zones had 9°C to the lower con- 
vecting zone, giving a cell total of 10°C and 
Ra = 7.5 x IO’. The replacement of conduction 
throughout the gradient zone by such large measures 
of convection with conduction in between led to a far 
greater rate of heat transfer to the surface. The rise in 
top temperature was so marked that the difference 
in density between top and bottom, which had been 
falling, rose again. 

In earlier scans, all that could be seen was the almost 
simultaneous emergence of these seven, high Rayleigh 
number zones, without the preliminary of a larger 
number of zones with lesser Rayleigh numbers. In 
later scans, the new zones merged until only three 
were left when the run was prematurely terminated by 
a leak in the tank. Other runs taken to completion 
showed that the new zones eventually merged into 
one, and, finally, the whole tank convected from top 
to bottom. 

It is not known how Weinberger derived his cri- 
terion since the earlier 1962 paper [26] was an internal 
publication not generally available. The 1964 paper 
[4] concerning solar ponds, describes the condition as 
that required to prevent oscillatory motion growing 
with time. The most obvious starting mode is the . . . 
Brunt-Vatsala buoyancy oscillation. If the density 
gradient is vertical and uniform, vertically displaced 
fluid is subject to a central restoring force and the 
resulting angular frequency is 

N = &lp * dddz). 

Viscous forces damp out perturbations provided that 
this frequency is sufficiently high. 

At the point of instability the part density gradient 
due to salt (ds/dz),,,, * (@/as) is cancelled out by the 
density gradient due to temperature, leaving 

dp KT ds dp -=-- - 
dz v dz ,,.,‘% 0 

In terms of the starting gradient (ds/dz)dyn 

At temperature gradients beyond critical, the fre- 
quency is too low for viscous damping to be effective 
and oscillations grow exponentially in amplitude. 

Veronis [27], also considering a density gradient, 
was principally interested in the possibility of finite 
amplitude transition to instability, but he first derived 
a stability criterion for the small amplitude transition 
to an overstable (oscillatory) mode with horizontal 
wave number CI and vertical wave number n. As with 
Weinberger, the oscillation began to grow before the 
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FIG. 10. Density and temperature profiles in a solar pond model (Tsilingiris [6]). 

static limit was reached, and an increase in salt gradi- 
ent of (1 + KT/v) was required for stability, leading to 
the same stability criterion (equation (5)). The angu- 
lar frequency pm in dimensionless form was given by : 

2 

PA = (1 +a;t2+n’jRS 

where u = v/Kr, that is, the Prandtl number, and R, 
is the salinity Rayleigh number. If c( is very large, the 
overstable mode reduces to buoyancy oscillation with 
frequency given by 

c7 
Pk=Ifg -* R,. 

As expected for linear (small amplitude) oscillations, 
this is independent of n, and when converted to dimen- 
sional form it is identical to that obtained from Wein- 
berger’s criterion (equation (6)). The argument is a 
circular one, but it is a satisfying check on algebra. 

Clearly, with this criterion it no longer matters 
whether the solar pond is shallow with the bulk of 
the heat being released at the base, or deep with a 
proportion of the heat contributing directly to the 
temperature gradient. Moreover, it applies also to the 
widely occurring density layers in the oceans where 
aff the solar radiation contributes directly to the tem- 
perature gradient. By contrast, although Turner, 
Huppert and Linden, and Fernando [28] all mention 
this case as possibly related to their model, it cannot 
be so. 

It remains to determine how the layers originate 
physically. Tritton [29] also considers that instability 
starts from buoyancy oscillations and overstability at 
low Rayleigh numbers, but cannot offer an expla- 
nation of how actual systems proceed to zones of high 
Rayleigh number. Since the Tsilingiris scans show no 
sign of new zones at lower Rayleigh numbers, it seems 
that there must be finite amplitude transition from 
buoyancy oscillation to convection at Rayleigh num- 
bers > IO’. A Rayleigh number of 10’ implies tur- 
bulence and, as will be shown later, a number of 
this order also means the onset of heat transfer by 
thermals. The first question is whether such thermals 
exist, and, if they do, what form they take. 

There are somewhat vague references in the litera- 
ture to fluid rising and falling from a density bound- 
ary, and Linden and Shirtcliffe [30] use such a model 
for a double-diffusive interface. Thermals are con- 
sidered to rise and fall from boundary layers on either 
side which become unstable by the Howard mechan- 
ism. They were not able to offer any specific kind of 
thermals other than the axisymmetric form of Spar- 
row et al. which is relevant only to a solid surface. 

4.2. Thermals from a density interface 
The boundaries between the new zones after break- 

down are substantial steps in density due both to 
temperature and salt discontinuities. They are of the 
‘free surface’ kind considered by Rayleigh [31]. The 
effective extent of each boundary layer, upwards and 
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downwards, can again be defined by the advance of 
complementary error functions in temperature and 
time (equation (I)). Each boundary layer at emission 
of thermals would then have a critical Rayleigh num- 
ber as first calculated by Rayleigh for two ‘free’ 
surfaces, namely 27(x4/4) = 657. 

As early as 1883, Rayleigh [32] had considered the 
somewhat similar Rayleigh-Taylor problem of a den- 

sity step due, say. to a temperature difference between 
a layer of cooler water over a layer of warm water. 
Elder [I71 computed what happens to the back-to- 
back boundary layers in this case. He used a critical 
Rayleigh number of 650. Figure II shows the iso- 
thermals with buoyant thermals ready to emerge, both 
upwards and downwards. 

From the Rayleigh number of 657 for instability, 
the thermal range for a given temperature was antici- 
pated to be somewhat greater than from a cooled 
surface (with Ra, = 571) but still much less than from 
a heated solid base (with Ra, = 1101). Experimental 
observations were carried out in a transparent plastic 
cylinder IO cm in diameter, with a height of 20 cm. 
The cylinder was half filled with a 5% salt solution at 
an initial temperature of 30°C. A thin cork diffuser 
was placed on the surface and the whole allowed to 
settle. The top half was filled with water at 14°C by 
pouring slowly onto the diffuser, using extreme care, 
especially to begin with. Any fluid allowed to fall onto 
the surface immediately plunged downwards and 
damaged the interface, which could be seen by reflec- 
tion and refraction. A syringe with a thin plastic tube 
extension was filled with food dye diluted with water 
at 14°C. Again with extreme care, the tube was 
inserted at a steep angle to the interface and about 3 
mm above its centre. A blob of dye was placed on the 
boundary layer and the tube carefully removed. 

Almost immediately, upward thermals were seen 
which were very clearly two-dimensional with Gaus- 
sian-like profiles. However, the Gaussians were all 

I J 
FIG. I 1. Growth of thermals upwards and downwards from 

a density interface (Elder [17]). 

Downwards symmetrical I I 

“mushroom” 

FIG. 12. Gaussian two-dimensional thermals from a density 
interface. 

tilted to one side as shown in the top half of Fig. 12. 
The tilt or shear was generally in the direction of 
withdrawal of the plastic tube, and may have been so 
imparted. Not only were the outlines more clearly 
visible than in the case of thermals from a cooled 
surface, but the flow of fluid within the thermals could 
be clearly seen as continuing from the base towards 
the direction of shear of the Gaussians. The end states 
all appeared as hooks. There were no upright Gaus- 

sian profiles and, hence, no mushroom end states. 
(The mushrooms and hooks from a surface cooled by 
air are confirmed to be simply different end states of 
basically the same phenomenon.) The most obvious 
reason for the thermals to be two-dimensional is that 
Marangoni effects occur at the interface. Surface ten- 
sion is affected by temperature and salt concentration, 
although there is the complication that the changes 
are in opposite directions. It increases with more salt 
but decreases with higher temperature. The best evi- 
dence available is from Linden and Shirtcliffe [30] who 
obtained a shadowgraph plan view of a sugar/salt 
diffusive interface which shows a mass of ‘collective 
instabilities’. Besides straight lines, there are clear 
signs of hexagons. 

Figure 5 shows the range/temperature relationship 
(equation (2)) calibrated with these data. The value 
of G was 7.30 x 10-‘2. At T = 20°C and AT/2 = 1°C 
the boundary layer thickness for Ra, = 657 is 3.60 
mm. Hence I’ = 0.75 mm, and is of the order expected 

for two-dimensional thermals with a somewhat greater 
range than those from a cooled surface. 

It was noted occasionally that dye remained 
trapped in the boundary layer, yet further dye placed 
on the boundary layer showed the continuing presence 
of thermals. Something similar had been seen in look- 
ing at thermals from a heated base and from a cooled 
surface, but it was not checked that thermals were still 
present. This could be a practical illustration that the 
liquid in the thermals comes mainly from the leading 
edge of the boundary layer. 

Obtaining further data at higher temperatures was 
much more difficult. Fluid on both sides of the bound- 
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ary had to be at elevated temperatures. Mixing during 
filling was more difficult to avoid, even with a 10% 
salt solution or a 20% sugar solution (which clears 
more quickly). Furthermore, the interface was more 
sensitive to perturbation by the dye injection probe 
and the dye itself. However, two further points were 
eventually obtained, 9.25 cm at 21°C and 10.5 cm 
at 22’C. Bearing in mind the difficulties, they were 
satisfyingly close to the calibration curve. Clearly a 
more sophisticated diffusion system is required for 
filling, together with a non-interactive method of 
observation of thermals, such as the Schlieren pho- 
tography of Spangenberg and Rowland [23] or the 
electro-chemical technique of Sparrow et al. [ 141. 

Attempts to view and measure the downward ther- 
mals met with no success. The plastic tube from the 
syringe had to penetrate the boundary layer, with 
inevitable disturbance. But the insuperable problem 
was that the dye needed to be diluted with salt solution 
at just the right temperature to rest against the under- 
side of the boundary layer. Although the occasional 
sign of a thermal was seen, in the main the dye either 
rose permanently into the boundary layer or fell to 
the bottom. A non-interactive method of observation 
of thermals is esskntial. Nevertheless, there is no 
reason to doubt the presence of downward thermals 
with the same range/temperature relationship. As 
with thermals falling from a cooled surface to air, it 
can be expected that at least a proportion of the 
Gaussian profiles would fall symmetrically and ter- 
minate as mushrooms, as indicated in the lower half 
of Fig. 12. 

4.3. The roles of thermals 
It can now be considered whether such thermals 

play a part in direct transition from buoyancy oscil- 
lation to high Rayleigh number convection zones. The 
transition might begin with buoyancy oscillations 
consisting of a number of horizontal density bands 
vibrating vertically in phase, with growing amplitude. 
Figure I3 illustrates such oscillations in temperature 
and density superimposed on a uniform gradient. A 
number of temperature *and density steps would 
appear. At a suitable amplitude of the buoyancy oscil- 
lations, temperature and density would be uniform 
over the central region of each step, whilst the ends 
would look remarkably like the boundary layers of 
convecting zones. With continued increase in the 
height of the zones, the ‘boundary layers’ could 
become unstable at Ra, = 657. Thermals would then 
emerge and convection begin directly at the appro- 
priately high Rayleigh numbers. Further theoretical 
and experimental investigation would aim to confirm 
that this is the preferred transition rather than the 
more conventional overstable oscillation. 

Whichever the approach to convection, when it had 
reached the measured Rayleigh numbers in excess of 
10’ there must have been thermals, both upwards and 
downwards, in each zone. In scan - of Fig. 
IO, the highest of the new zones had a top AT/2 of 
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FIG. 13. Schematic effect of a critical amplitude of buoyancy 
oscillation on the gradient zone. 

I I ‘C as compared with the average of 1.15”C. Since 
the rate of thermal formation is proportional to 
(Ar)“,’ there were 20-times as many thermals going 
downwards as upwards. Hence, as is very clearly seen, 
this zone grew at the expense of the next one down. 
The lowest of the new zones had a bottom AT/2 of 
9’C, giving l8-times as many upward thermals as 
those coming downwards. The lowest zone absorbed 
the next zone above. The process continued, with the 
top and bottom of the new zones absorbing the rest 
until only three were left. Had the run not been ter- 
minated, the process would have continued until only 
one zone was left. 

Although there are many details left to investigate, 
there seems no doubt that the Tsilingiris and Mullett 
model of double-diffusive convection, based on Wein- 
burger/Veronis, is appropriate for solar powered sys- 
tems, and that the specifically identified buoyant ther- 
mals play causal roles in all the physical phenomena. 
Furthermore, these same thermals provide the physi- 
cal mechanisms for the Turner/Huppert and Linden 
model at much higher power levels. Their rapid 
growth of the lower convecting zone must be due to 
a copious supply of axisymmetric thermals from the 
‘strongly’ heat base, whilst the eventual short sharp 
temperature gradient in the salt gradient zone is over- 
turned by upward two-dimensional thermals. Hup- 
pert and Linden [25] say “Merging (of zones) pro- 
duced by the mean vertical migration of an interface is 
not yet understood and is not included in our model”. 
Again the relative fluxes of upwards and downwards 
two-dimensional thermals must have been respon- 
sible. Fernando [28], also working in the ‘strong’ 
region at 700-4500 W m - * realised this need for physi- 
cal mechanisms and made shadowgraphs in a vertical 
plane of the lower convecting zone and the emerging 
zones above. However, this technique, like Schlieren 
photography, shows such a mass of detail that Fer- 
nando was able only to distinguish ‘eddies’ rather than 
the individual thermals. 
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5. CONVECTION BY THERMALS 

5.1. Heat transfer by thermals 
Table 1 summarises data concerning the three 

classes of thermals from the three possible kinds of 
boundary. Much has been said about their special 
roles in double-diffusion and in solar ponds. However, 
little has been said concerning the general role of 
thermals in the process of convection and the order 
of vertical dimensions at which classical convection 
becomes ‘turbulent’ and heat transfer by thermals 
takes over. From then onwards, each horizontal con- 
vecting layer has two sets of buoyant thermals, 
upwards and downwards, with the type and range 
being determined by the nature of each boundary. 

Heat supplied at the lower boundary is transported 
by conduction within the boundary layer, and then 
beyond it as heated fluid quantised according to the 
thermals appropriate to the boundary. The fluid trans- 
ported upwards by thermals is replaced by cooler fluid 
drawn into the boundary layer. If the rising thermals 
have sufficient range, determined by their type and the 
environmental temperature, they are stopped by the 
density change at the leading edge of the upper bound- 
ary layer. Fluid from the upper boundary layer, 
cooled by upward conduction of heat or by evap- 
oration, is transported downwards as appropriate 
thermals with corresponding range. Heated fluid, the 
debris of upward thermals, is drawn into the upper 
boundary layer as replacement. The falling thermals 
go as far as they can, and the cycle then repeats. 
The resultant circulation and mixing is seen in all the 
thermal experiments using dye, as eventual uniform 
coloration. Tritton [29] also outlines this process 
but without the specificity of this new knowledge of 
thermals. 

If the range of the upward thermals from a heated 
base is less than the vertical height of the cell, the fluid 
up to that distance becomes heated until, eventually, 
the range does extend to the vertical height. It seems 
remarkably fortuitous for practical systems that the 
range of axisymmetric thermals from a heated solid 
base is so great. Relevant design data can be obtained 
directly from the range equation for axisymmetric 
thermals as a function of environmental temperature. 
Equivalent Rayleigh numbers for the cell would cover 
a very wide spectrum, depending also on the applied 
temperature difference. Downward thermals, unless 
also from a solid top, have much shorter ranges such 

that the cooling due to the upper boundary is more 
confined. Equivalent Rayleigh numbers would cover 
a quite different range. Again Tritton [29] described 
this phenomenon, but as occurring when ‘*. . at the 
highest Rayleigh numbers, the thermals lose their 
identity. .“. 

5.2. Salt gradient solar ponds 

A full size salt gradient pond operates throughout 
according to this mode of convection by thermals, 
both normally and should the gradient zone break 
down into further convecting zones. This is also true 
at the typical scale of laboratory models. Figure 14 
shows schematically how each convecting zone has 
two sets of thermals. Except for the already known 
axisymmetric thermals from the base, all the rest are 
‘two-dimensional Gaussian’, including those upwards 
and downwards from the top and bottom of the gradi- 
ent zone. Their roles have been described. Little spec- 
ific data are available from solar pond literature. Hull 
and Mehta [33] in looking at a possible model of 
gradient zone erosion, refer to a number of papers 
by other authors on Row visualisation in the lower 
convecting zone. It is there noted that “Fluid flow in 
the bottom convecting zone is characterised by mildly 
turbulent convection, consisting of thermals rising 
from the heated bottom and descending from the 
gradient zone boundary”. 

There are three unknowns left to investigate. The 
first concerns the quanta of fluid and of heat in each 
of the three types of thermals. The boundary layer 
thickness is involved in determining volume, but this 
is itself a function of applied temperature difference 
in such a way as to suggest that it is the amount of 
heat which is principally quantised. Optical counts of 
thermals against time at a variety of environmental 
and applied temperatures would resolve the matter. 
The electrochemical technique used by Sparrow et 
al. seems well suited to continuous visualisation and 
counting of thermals. 

Still less is known, as yet, about the quantification 
of boundary mixing and erosion. The density steps 
are such that impacting thermals are turned around 
with extremely small penetration, but the cumulative 
effect of many thermals is large. Laboratory exper- 
iments using a simple density step would provide basic 
data from which to determine what happens in actual 
systems such as solar ponds, but there are many vari- 

Table 1 

G Range at 20°C 6 r 
Boundary layer Ra, x 10-12 [ml [mm1 L-1 

Solid-liquid 1101 36.1 0.565 4.29 1.40 
Liquid-liquid 6Sl 1.30 0.105 3.60 0.75 
Liquid-air 571 2.36 0.033 3.44 0.45 

Range = g(a/Kv) . G G = 6’rZAT/2 
Ru, = g(a/Kv) * S’AT/2. 

For AT/2 = 1°C 
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FIG. 14. Schematic of thermals in a salt gradient solar pond. 

ables which could be significant. From the model 
experiments of Azhari [I I] it is already known that 
the size of the density step at the impacted boundary 
is a variable. Fortunately, it seems that thermal vel- 
ocity is not a significant function of thermal height 
(until the thermals come sharply to rest) so that some 
simplification might be possible. Given the results of 
thermal quantisation experiments, it would not be 
necessary to observe and count the thermals. Their 
flux could be computed from power input. 

Finally, what happens when the impacted boundary 
is that of the gradient zone in an actual solar pond 
depends upon the extent to which a density step 
develops during the thermal build-up of the pond. 
There is need for accurate measurements in the field 
using a temperature/density scanner of the Tsilingiris 
type. 

5.3. Thermals in relationship to turbulence 
Generally it is believed that turbulence replaces 

laminar flow at Rayleigh numbers of the order lo’, 
although according to Rossby [34] it occurs at 
Ra x 14OOOPr’, where Pr is the Prandtl number and 
tl = 0.6 for Pr >> 1. For water at 2o”C, Pr z 7, so that 

Ra = 45000. However, knowledge of the origin of 
thermals enables a more explicit view to be taken. 

Figure 15 shows diagrammatically how convection 
by thermals should develop for the particular case of 
two horizontal solid surfaces. The vertical parameter 
is M = d/6 where d is the cell height and 6 the critical 
boundary layer thickness for thermal emission. The 
temperature distributions are schematic. 

First is shown the lower boundary layer for an 
infinitely deep cell. The temperature distribution starts 
as a complementary error function, erfc (z/2 * J(K* t)), 
with AT/2 as the applied temperature difference at 
the base. The tangent to the complementary error 
function at M = 0, shown as a broken line, determines 
the effective critical depth of the boundary layer at 
M = 1. The thermal, ready to emerge, is shown as a 
circle of diameter M = 1. In three dimensions it 
would be a sphere for an axisymmetric thermal. The 
upper surface of the boundary layer is taken to be of 
the ‘free’ surface, density difference type. The critical 
number for thermal emission is Ra, = 1100. Hence, in 
terms of the nondimensional height M, all Rayleigh 
numbers for complete cells with total applied tem- 
perature AT, are : 
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M _ g d = cell height between metal boundaries 
6 6 = critical boundary layer for thermal emission 

-4 
AT 
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For T = 20°C, AT = l°C 
d = 1.924 cm 

FIG. 15. Schematic of transition from Binard-Rayleigh convection to convection by thermals. 

Ra = 2M ’ - Ra, = 2200M ‘, 

independent of T and AT. 
Next is shown the complete cell at which classical 

convection starts. The critical Rayleigh number is 
1708, so that the vertical height is M = 0.92. The 
temperature distribution is linear. 

Cells are then shown at integral values of M. For 
M = 2, the boundary layers cannot proceed to ther- 
mal instability since T and dT/dz must be continuous 
at the centre of the cell. Ra is 17 600. The convection 
is of BCnard/Rayleigh type with instability and fluid 
flow end to end of the cell. 

M = 3 is clearly the transition point. It is not 
immediately obvious whether or not the boundary 
layers can proceed to instability. If they did so, then 
the heat transfer would be by thermals emerging from 
each boundary layer but not having any free flight. 
Ra is 59 400. 

For M = 4, there is no doubt that the boundary 
layers do become unstable with a region of zero tem- 
perature in the middle of the cell. The thermals have 
free flight and provide full heat transfer. RQ is 140 800. 

At the turbulence value of Ra = 45000 due to 
Rossby, M is 2.73. At the generally accepted value of 
Ra = 100000, M is 3.57. The assumption that tur- 
bulence means heat transfer by thermals around 
M = 3 seems well founded. This is indicated in Fig. 3 
by repeating and inverting Howard’s mean tem- 
perature distribution so as to make a cell with M = 3. 
Howard’s depth parameter 5 is such that z = 6 and 

M = 1 at 5 = 0.885. Further evidence can be sought 
from measurements on complete cells and calculated 
temperature distributions. 

Measured temperature distributions for complete 
cells are mainly for air and lower Rayleigh numbers. 
Gille [35], for example, goes as far as Ra = 2.7 x 10J. 
However, more significant information is available 
concerning Nusselt numbers (NZJ is the ratio of the 
actual heat flux to the purely diffusive heat flux with 
a hypothetical linear gradient of the same overall tem- 
perature between the same boundaries). 

When the boundary layers are separated, it is found 
experimentally that Nu = c Ra”‘, again implying 
fixed boundary layers, with wider spacings for higher 
Rayleigh numbers. According to Turner [9], the best 
values of c are 0.08 for air and 0.09 for water. For 
air, the initial slope of Howard’s curve gives good 
agreement : 

Nu = (AT/26)/(AT/d) 

= d/26 = 3.061 = O.O78(Ra) “I. 

For water, with a complementary error function 
boundary layer and Ra, = 1101: 

‘I3 
= O.O38(Ra) “I. 

Hence it can no longer be arbitrarily assumed that a0 
determined by the initial slope is the same as 6, for 
criticality of the boundary layer. If d/2a. is to be 
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O.O9(Ra) ‘j3, then 6, = 2.376,. Since there is no better 
assumption for Ra,, 6, requires the full extension of 
the erfc down to 1% of its initial value. The boundary 
layers then appear more separated, in line with the 
trend of measured temperature distributions. 
Howard’s distribution for air gives a satisfactory value 
of Nu since for an appreciable time after the boundary 
layer has been stripped, the erfc is less advanced. The 
boundary layer distribution in water may, perhaps, 
lie between a complementary error function and 
Howard’s average. 

Theoretical derivation of temperature distributions, 
even with spatial means taken over horizontal planes, 
is notoriously difficult. Herring [36, 371 and Elder [38] 
used the Boussinesq approximations, suitably non- 
dimensionalised so that the flow was specified by the 
Rayleigh and Prandtl numbers. Severe assumptions 
and simplifications had to be made, prompting Elder 
to write “The reader unfamiliar with the ruthless 
approximations needed to cope with turbulent studies 
may be surprised that the approximations work at 
all”. Nevertheless the results were at least qualitatively 
correct in that the distributions consisted of two 
boundary layers, looking much like complementary 
error functions, well separated and becoming even 
more so as Rayleigh number was increased. 

However, numerically there were problems. Her- 
ring [36] for two ‘free’ boundaries had such narrow 
boundary layers that Nu was 0.31 (Ra)“‘. Herring 
[37] for two solid boundaries, still had boundary lay- 
ers somewhat narrower than expected, with Nu being 
0.135 (Ra) . “’ Elder’s results [38] were very similar. 
The value of Ra, for the boundary layers was, at the 
most, 150, needing 6 to be larger by about a factor of 
two for the critical value. However, it is Elder’s com- 
putational procedure which is particularly interesting. 
Instead of scaling his equations in terms of cell height 
d, he used 6, and found that 6 could be chosen such 
that Aa = AC = constant. (Throughout his re- 
searches, Elder used Rayleigh’s original symbol A.) 
Hence, when the boundary layers were separated, a 
single solution served for all Rayleigh numbers from 
somewhere in the range IO4 to IO5 upwards. It cannot 
be said precisely what numerical changes there would 
have been in Elder’s result had he recognised that AC 
should have been in terms of the applied temperature 
T/2 not T (in his terminology). But, in dimensional 
form, his relationship would have been A = 2 
(d/6) ‘AC, the exact equivalent of Ra = 2M 3 Ra,. 

It can be concluded that experimental values of 
Nusselt number and analytical spatial means of tem- 
perature over horizontal planes confirm the physical 
view of heat transfer by thermals which is illustrated 
in Fig. 15. Instead of laminar flow simply becoming 
turbulent at R - IO5 there is a complete change of 
mode of heat transfer to the quantised form of ther- 
mals. (This can only be detected by visualisation of 
the thermals since the stochastic nature of the thermals 
gives temperature fluctuations at a point as in tur- 
bulence.) It seems also, at least to a first order, that 

greater heating (or cooling) rate leads to a pro- 
portionally greater rate of thermal quanta. 

An almost identical diagram to that of Fig. 15 can 
be constructed for convection between two ‘free’ sur- 
faces of the fluid density step type. Ra, for thermal 
formation is 657, and so too is Ra for the onset of 
cellular convection. Since Ra, is in terms of AT/2 and 
Ra in terms of AT, the value of M for the critical cell 
is 0.79. The rest of the diagram looks the same, with 
the likely transition at M = 3 being at Ra = 35 500. 
This is the value which should apply to the new con- 
vecting zones formed when the gradient zone of a salt 
gradient pond breaks down. 

The diagram is slightly more complicated if the top 
and bottom surfaces are different, such as a solid 
vessel open to air. If M is chosen to be unity for the 
lower boundary layer, then M for the upper boundary 
layer will be determined by its appropriate Ra, value 
in relationship to that for the lower boundary layer. 
It would seem reasonable to determine the transition 
point on the basis of the spacing between the bound- 
ary layers being equal to the size of the larger thermal. 
Solar ponds involve two such cases, the solid base to 
density step and the density step to surface to air. 

It is apparent also from the diagrams that classical 
convection occupies only a small region of spacing 
between horizontal surfaces from about 0.4 cm to the 
order of 2 cm. It is clear that the behaviour of a 
salt gradient solar pond, even at the usual laboratory 
scale, is entirely characterised by convection by ther- 
mals, as must be many other natural and artificial 
systems. 

6. CONCLUDING REMARKS 

The principal objective of this work was to shed 
some light on the fluid mechanics of salt gradient 
ponds. In retrospect, it is no coincidence that all the 
questions have been answered, satisfactorily it is 
believed, in terms of buoyant thermals. When eventu- 
ally it had been shown that quantised heat transfer by 
thermals takes over from Benard-Rayleigh flow at 
Rayleigh numbers of the order of 5x 10“ to 105, it 
became clear that solar ponds function, and mal- 
function, in the ‘thermal’ mode, and, fortunately for 
it was not planned at the time, so do laboratory 
models at about l/6 vertical scale. The lack of much 
earlier progress was entirely due to the inadequacy for 
the purpose of the state of knowledge of buoyant 
thermals at that time. 

The existence of axisymmetric thermals from a 
heated solid base was well known, and their role in 
heat transfer had been described quite recently. It was 
much less well known, though quite widely reported 
in the literature, that near-two-dimensional sheets of 
fluid fell from an open surface cooled by evaporation, 
starting from ridges related to surface tension. There 
were a few vague references to ‘mild thermals’ from 
density/temperature interfaces. 

From the research reported in this paper, it is now 
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known that axisymmetric thermals can retain their 
identity to very considerable distances. The falling 
sheets from a cooled surface are near-two-dimen- 
sional thermals of initially Gaussian profile, ter- 
minating in a head which appears as a mushroom or 
a hook, depending upon whether the Gaussian travels 
true or with a ‘shear’. Density/temperature bound- 
aries also show two-dimensional Gaussian thermals 
travelhng upwards with a ‘shear’ and terminating in a 
hook. Although the available experimental technique 
was not adequate to view them, there is ample 
evidence, particularly theoretical, that there are down- 
ward plumes at the same time. Hence the three poss- 
ible kinds of boundary each have their characteristic 
thermals. Whatever the combination of boundaries, a 
convecting cell has both upwards and downwards 
thermals providing heat transfer. 

All three categories of thermals have distinct ranges 
which increase markedly with environmental tem- 
perature according to a common law but varying in 
scale. Those from a solid boundary show by far the 
greatest range, and those from a surface to air the 
least, all consistent with the Rayleigh instabilities of 
the boundary layers and the forms of the thermals. 
There is no heat transfer when the cell height is greater 
than the appropriate thermal range. The boundary 
then heats or cools locally, until the range is 
sufficiently extended. Only the number of thermals, 
and not the range, is affected by applied temperature 
(that is, input or output power). 

In solar pond models, and in supplementary exper- 
iments, all three kinds of thermals show that when 
their range exceeds the height of the cell, boundary 
mixing and erosion occurs, that is, they are responsible 
for ‘penetrative convection’. 

There is also evidence to suggest that buoyant ther- 
mals might be responsible for finite amplitude tran- 
sition from buoyancy oscillation directly to high Ray- 
leigh number convection. 

It follows that for double-diffusive systems gener- 
ally, the physical phenomena are determined by the 
presence and the behaviour of buoyant thermals. This 
applies both to the Tsilingiris and Mullett model 
which is relevant to solar powered systems, and to the 
Tumer/Huppert and Linden model which is relevant 
only to systems much more strongly heated at the 
base. 

These were the missing links in explaining the 
behaviour of salt gradient solar ponds. They must be 
relevant also to other natural and artificial systems of 
sufficient size, and could be equally illuminating. 
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